

INFRARED EMITTING DIODE

General Description

The OSE-1L8 are high-power GaAs IRED mounted in a blue clear plastic package.

With lensed package and cup type frame, these efficient devices have narrow beam angle

Features

- Narrow beam angle
- High output power
- Available for pulse operating
- Meet RoHS

Applications

- Emitters of remote control
- Fiber optic communications
- Smoke sensors

MAXIMUM RATINGS

(Ta=25°℃)

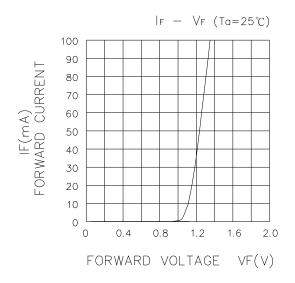
Item	Symbol	Rating	Unit
Reverse voltage	VR	5	V
Forward direct current	lF	100	mA
Power dissipation	PD	170	mW
Pulse forward current *1	IFP	1	Α
Operating temp.	Topr.	-25 ~ +75	$^{\circ}\!\mathbb{C}$
Storage temp.	Tstg.	-25 ~ +100	

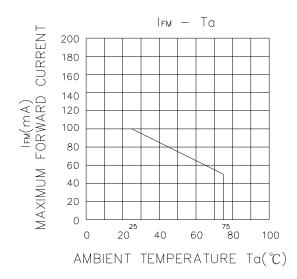
^{*1} TW = 100us, T = 10ms

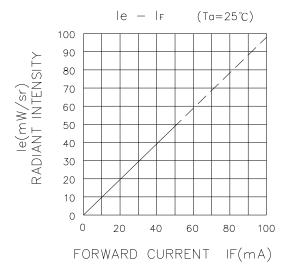
ELECTRO-OPTICAL CHARACTERISTICS

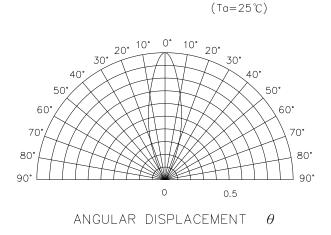
(Ta=25°C)

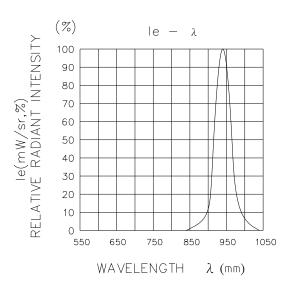
Item		Symbol	Conditions	Min.	Тур.	Max.	Unit
Radiant intensity		le	IF=50mA	30	-	-	mW/sr
Forward voltage		VF	IF=100mA	-	1.35	1.70	V
Reverse current		IR	VR=4V	-	-	10	uA
Switching Speeds	Rise time	tr	IF=50mA	-	2000	-	nsec
	Fall time	tf		-	1000	-	nsec
Peak wavelength		λр	IF=50mA	-	940	-	nm
Spectral band width @ 5	50%	Δ λ IF=50mA		-	50	-	nm
Half angle		$\Delta \; \theta$ IF=50mA		-	±15	-	deg.


^{*}Radiant Intensity Measurement allowance is ± 15%


^{*}Forward voltage Measurement allowance is $\pm\,0.05\text{V}$


^{*}Peak emission wavelength Measurement allowance is ± 1nm



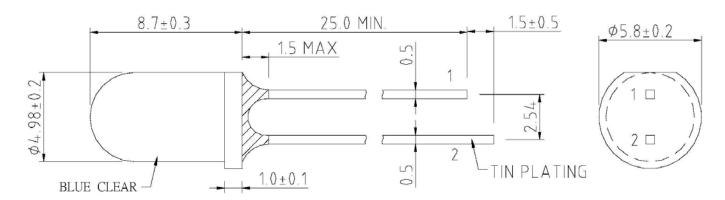


RELIABILITY TEST

CONDITIONS:

The reliability of products shall be satisfied with items listed below .

NO.	Item	Condition	Time / Cycle	Number of Damaged
1	Soldering Heat Test	260℃	5 sec	0 / 60
2	Thermal Shock	0°C (15 sec) ~ 100°C (15 sec)	20 cycle	0 / 60
3	High Temp. Storage	100℃	1000 Hrs	0 / 60
4	Low Temp. Storage	-25 ℃	1000 Hrs	0 / 60
5	Operation Temperature Cycle TEST	-25℃ ~ 75℃	100 Cycles 200Hrs	0 / 60
6	High Temp. High Humidity Test	60℃ , 90% RH	1000 Hrs	0 / 60
7	Operation Life Test	Room Temp : 50mA	1000 Hrs	0 / 60


DIMEMSIONS

SIGN: 1. CATHODE

2. ANODE

UNIT: mm

Tolerance is $\pm 0.25 \text{mm}$ unless otherwise specified.

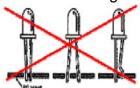
APPLICATION NOTES

1. Static Electricity and Surge

Static electricity and surge damage LEDs. It is recommended to use a wrist band or antielectrostatic glove when handling the LEDs. All devices, equipment and machinery must be electrically grounded.

2. Lead Forming

The leads should be bent at a point at least 3mm from the epoxy resin of the LEDs. Bending should be performed with the base firmly fixed by means of a jig or radio pliers.


3. Mounting Method

The leads should be formed so they are aligned exactly with the holes on the PC board. This will eliminate any stress on the LEDs.

Use LEDs with stoppers or resin spacer to accurately position the LEDs.

The epoxy resin base should not be touching the PC board when mounting the LEDs.

Mechanical stress to the resin may be caused by the warping of the PC board when soldering. The LEDs must not be designed into a product or system where the epoxy lens is pressed into a plastic or metal board.

The lens part of the LED must not be glued onto plastic or metal.

The mechanical stress to the lead frame must be minimized.

4. Soldering

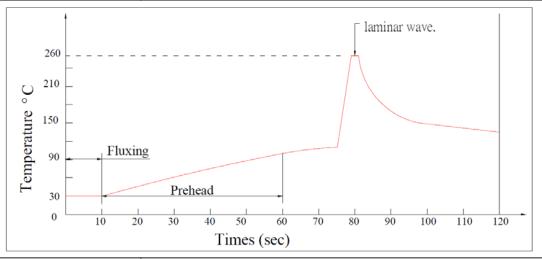
Solder the LEDs no closer than 3mm from the base of the epoxy resin.

For solder dipping, it may be necessary to fix the LEDs for correct positioning.

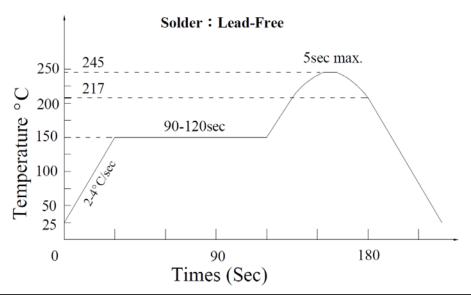
When doing this, any mechanical stress to the LEDs must be avoided.

When soldering, do not apply any mechanical force to the lead frame while heating.

Repositioning after soldering must be avoided.



Soldering Profile


Compliant with the following condition:

- (1) Leaded quantity of product below 100 ppm
- (2) Lead-free process

Shape	Lead Frame Type / Holder Type		
	1. Temp. at tip of iron: 300°C MAX (30W MAX).		
Hand soldering	2. Soldering time: 3 sec MAX.		
	3. Distance: 3 mm MIN (from solder joint to case)		
	1. Preheat temp: 100°C MAX, 60 sec MAX.		
DID coldering	2. Bath temp : 260°C MAX.		
DIP soldering	3. Bath time: 3 sec MAX.		
	4. Distance: 3 mm MIN (From solder joint to case).		

Shape	SMD Type		
Hand soldering	1. Temp. at tip of iron: 300°C MAX (30W MAX).		
	2. Soldering time: 3 sec MAX.		
	1. Preheat temp.: 150-180°C, 4°C/sec MAX., 120 sec MAX.		
Reflow soldering	2. Peak temp.: 245°C MAX., 5 sec MAX.		
	3. Duration above : 217°C , 60 sec MAX.		

(Unit: mm)

(Unit: mm)

Packing Specifications

1) Label Specification

Label Dimensions

Label Type	L	W	Remark
Label #1	76	56	

2) Box Specifications & Packing Method

Packing Type	Materials	LxWxH	Quantity
Polybag	Polyethylene	-	500 pcs
Box-#1	Corrugated Cardboard	170 x 240 x 65	1,500 pcs
Box-#2	Corrugated Cardboard	400 x 250 x 240	15,000 pcs

1. Put max 500pcs of products in a Polybag.

2. Put max 3pcs of Polybags in Box-#1

3. Put max 10pcs of Box-#1 in Box-#2

